Edmore Public School 706 Main St, Edmore, ND 58330

Physical Science Lesson Plan		
Dates: March 18 - 22, 2024	Time and Period: 10:30 - 11:22 AM, Third Period	
Performance Standard: HS-PS3-1 Create a mathematical model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.		
HS-PS3-2 Develop and use models to illustrate that energy is associated with motion and relative position of particles (objects).		

HS-PS3-3

Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy

Monday, March 18	
Торіс	Analyzing Parallel and Series Circuits, pp. 632 - 637
Objectives	Describe the current and voltage across the components of a parallel and series circuit.
Bell Ringer	Differentiate parallel and series circuits in terms of current.
Procedure / Instructional Delivery	Guided Practice, Interactive Discussion, Hands - on / Laboratory Activity
Assessment	Electric Currents from Magnetism, pp. 632 - 637

Tuesday, March 19	
Торіс	Electromagnetic Induction, pp. 632 - 634
Objectives	Describe how relative motion between a conductor and magnetic field can induce current.
Bell Ringer	Define <i>Electromagnetic Induction</i>
Procedure / Instructional Delivery	Guided Practice, Interactive Discussion, Hands - on / Laboratory Activity

Assessment	Electromagnetic Induction, pp. 632 - 634
------------	--

Wednesday, March 20	
Торіс	Electric Currents from Magnetism, pp. 632 - 638
Objectives	Describe how relative motion between a conductor and magnetic field can induce current.
Bell Ringer	Differentiate between step-up and step-down transformers.
Procedure / Instructional Delivery	Guided Practice, Interactive Discussion, Hands - on / Laboratory Activity
Assessment	Electric Currents from Magnetism, pp. 632 - 637

Thursday, March 21	
Торіс	Review Quiz Electromagnetic Force, pp. 634 - 637
Objectives	Describe how the magnetic field of an electric current can be used to create a magnetic field
Bell Ringer	Define <i>Alternating Current</i>
Procedure / Instructional Delivery	Guided Practice, Interactive Discussion, Hands - on / Laboratory Activity
Assessment	Review Quiz Electromagnetic Force, pp. 634 - 637

Friday, March 22	
Торіс	UNIT TEST Introduction to Waves and Light, 505 - 507
Objectives	Describe wave and wave generation.
Bell Ringer	Define <i>electromagnetic waves</i> and use it in a sentence.
Procedure / Instructional Delivery	Assessment, Interactive Discussion, Simulation
Assessment	UNIT TEST Introduction to Waves and Light, 505 - 507