Edmore Public School 706 Main St, Edmore, ND 58330

Physical Science Lesson Plan		
Dates: April 15 - 19, 2024	Time and Period: 10:30 - 11:22 AM, Third Period	
Performance Standard: HS-PS3-1 Create a mathematical model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.		
HS-PS3-2	is approximated with motion and volative	

Develop and use models to illustrate that energy is associated with motion and relative position of particles (objects).

HS-PS3-3

Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy

Monday, April 15	
Торіс	What is Radioactivity? pp. 327 - 330
Objectives	Explain what happens to an element as it undergoes radioactive decay.
Bell Ringer	Define <i>radioactive decay</i>
Procedure / Instructional Delivery	Guided Practice, Interactive Discussion, Hands - on / Laboratory Activity
Assessment	What is Radioactivity? pp. 327 - 330

Tuesday, April 16	
Торіс	Radioactive Decay Rates, pp. 333 - 336
Objectives	Predict atomic nuclei as a product of radioactive decay.
Bell Ringer	Define <i>half-life</i>
Procedure / Instructional Delivery	Guided Practice, Interactive Discussion, Hands - on / Laboratory Activity
Assessment	Radioactive Decay Rates, pp. 333 - 336

Wednesday, April 17	
Торіс	Nuclear Fusion and Fission, pp. 337 - 341
Objectives	Predict what happens when the nuclei of small atoms are joined.
Bell Ringer	Differentiate between <i>nuclear fusion and nuclear fission</i>
Procedure / Instructional Delivery	Guided Practice, Interactive Discussion, Hands - on / Laboratory Activity
Assessment	Nuclear Fusion and Fission, pp. 337 - 341

Thursday, April 18	
Торіс	Nuclear Radiation Today, pp. 344 - 351
Objectives	Identify examples of benefits and risks from nuclear radiation.
Bell Ringer	What are two benefits and two risks associated with nuclear radiation?
Procedure / Instructional Delivery	Guided Practice, Interactive Discussion, Hands - on / Laboratory Activity
Assessment	Nuclear Radiation Today, pp. 344 - 351

Friday, April 19	
Торіс	Simulating Nuclear Radiation, pp. 352 - 353
Objectives	Simulate the decay of radioactive isotopes by throwing a dice, and observe the results.
Bell Ringer	Give two examples of radioactive isotopes found on Earth.
Procedure / Instructional Delivery	Guided Practice, Interactive Discussion, Hands - on / Laboratory Activity
Assessment	Simulating Nuclear Radiation, pp. 352 - 353